Vector Algebra Question 101

Question: The line joining the points $ 6\mathbf{a}-4\mathbf{b}+4\mathbf{c},,-4\mathbf{c} $ and the line joining the points $ -\mathbf{a}-2\mathbf{b}-3\mathbf{c},,\mathbf{a}+2\mathbf{b}-5\mathbf{c} $ intersect at

Options:

A) $ -4\mathbf{a} $

B) $ 4\mathbf{a}-\mathbf{b}-\mathbf{c} $

C) $ 4\mathbf{c} $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

  • The equations of the lines joining $ 6\mathbf{a}-4\mathbf{b}+4\mathbf{c},-4\mathbf{c} $ and $ -\mathbf{a}-2\mathbf{b}-3\mathbf{c},\mathbf{a}+2\mathbf{b}-5\mathbf{c} $ are respectively. $ \mathbf{r}=6\mathbf{a}-4\mathbf{b}+4\mathbf{c}+m(-6\mathbf{a}-4\mathbf{b}-8\mathbf{c}) $ ?..(i) and $ \mathbf{r}=-\mathbf{a}-2\mathbf{b}-3\mathbf{c}+n(2\mathbf{a}+4\mathbf{b}-2\mathbf{c}) $ ?..(ii) For the point of intersection, the equations (i)and (ii) should give the same value of $ \mathbf{r} $ . Hence, equating the coefficients of vectors $ \mathbf{a},\mathbf{b} $ and $ \mathbf{c} $ in the two expressions for $ \mathbf{r} $ , we get $ 6m+2n=7,2m+4n=1 $ and $ 8m-2n=7 $ . Solving first two equations, we get $ m=1 $ , $ n=\frac{1}{2} $ . These values of m and n also satisfy the third equation. Hence, the lines intersect. Putting the value of m in (i), we get the position vector of the point of intersection as $ -4\mathbf{c} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें