Vector Algebra Question 107
Question: The vectors $ \hat{i}-2x\hat{j}-3y\hat{k} $ and $ \hat{i}+3x\hat{j}+2y\hat{k} $ are orthogonal to each other. Then the locus of the point (x, y) is
Options:
A) Hyperbola
B) Ellipse
C) Parabola
D) Circle
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] $ (\hat{i}-2x\hat{j}-3y\hat{k}).(\hat{i}+3x\hat{j}+2y\hat{k})=0 $ $ 1-6x^{2}-6y^{2}=0 $ $ -6x^{2}-6y^{2}=-1 $ $ x^{2}+y^{2}=\frac{1}{6} $ $ x^{2}+y^{2}={{( \sqrt{\frac{1}{6}} )}^{2}} $