Vector Algebra Question 107

Question: The vectors $ \hat{i}-2x\hat{j}-3y\hat{k} $ and $ \hat{i}+3x\hat{j}+2y\hat{k} $ are orthogonal to each other. Then the locus of the point (x, y) is

Options:

A) Hyperbola

B) Ellipse

C) Parabola

D) Circle

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ (\hat{i}-2x\hat{j}-3y\hat{k}).(\hat{i}+3x\hat{j}+2y\hat{k})=0 $ $ 1-6x^{2}-6y^{2}=0 $ $ -6x^{2}-6y^{2}=-1 $ $ x^{2}+y^{2}=\frac{1}{6} $ $ x^{2}+y^{2}={{( \sqrt{\frac{1}{6}} )}^{2}} $