Vector Algebra Question 108

Question: The equation of the plane passing through the points $ (-1,-2,,0),(2,,3,,5) $ and parallel to the line $ \mathbf{r}=-3\mathbf{j}+\mathbf{k}+\mathbf{\lambda }(2\mathbf{i}+5\mathbf{j}-\mathbf{k}) $ is

[J & K 2005]

Options:

A) $ \mathbf{r}.(-30\mathbf{i}+13\mathbf{j}+5\mathbf{k})=4 $

B) $ \mathbf{r}.(30\mathbf{i}+13\mathbf{j}+5\mathbf{k})=4 $

C) $ \mathbf{r}.(30\mathbf{i}+13\mathbf{j}-5\mathbf{k})=4 $

D) $ \mathbf{r}.(30\mathbf{i}-13\mathbf{j}-5\mathbf{k})=4 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the equation of plane is $ a(x+1)+b(y+2)+c(z-0)=0 $ ?..(i) As it passes through (2, 3, 5) so, $ 3a+5b+5c=0 $ ?..(ii) also, $ 2a+5b-c=0 $ ?..(iii)
    $ \therefore $ $ \frac{a}{-5-25}=\frac{b}{10+3}=\frac{c}{15-10} $
    $ \therefore $ $ \frac{a}{-30}=\frac{b}{13}=\frac{c}{5} $ Hence equation of plane is, $ -30x+13y+5z=4 $ or $ \mathbf{r}.(-30\mathbf{i}+13\mathbf{j}+5\mathbf{k})=4 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें