Vector Algebra Question 111

Question: If $ a^{2}+b^{2}+c^{2}=1 $ where $ a,b,c\in R $ , then the maximum value of $ {{(4a-3b)}^{2}}+{{(5b-4c)}^{2}}+{{(3c-5a)}^{2}} $ is

Options:

A) 25

B) 50

C) 144

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let $ {{\vec{r}}_1}=a\hat{i}+b\hat{j}+c\hat{k},{{\vec{r}}_2}=3\hat{i}+4\hat{j}+5\hat{k} $ $ |{{\vec{r}}_1}\times {{\vec{r}}_2}{{|}^{2}}\le |{{\vec{r}}_1}{{|}^{2}}|{{\vec{r}}_2}{{|}^{2}}…(1) $ Now, $ {{\vec{r}}_1}\times {{\vec{r}}_2}= \begin{vmatrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\ a & b & c \\ 3 & 4 & 5 \\ \end{vmatrix} $ $ =\hat{i}(5b-4c)+\hat{j}(3c-5a)+\hat{k}(4a-3b) $ So, from (1): $ {{(5b-4c)}^{2}}+{{(3c-5a)}^{2}}+{{(4a-3b)}^{2}}\le 50 $