Vector Algebra Question 121

Question: The angles of a triangle, two of whose sides are represented by the vectors $ \sqrt{3}(\vec{a}\times \vec{b}) $ and $ \vec{b}-(\vec{a}.\vec{b})\vec{a} $ where $ \vec{b} $ is a non-zero vector and $ \vec{a} $ is a unit vector are

Options:

A) $ \tan {{,}^{-1}}( \frac{1}{\sqrt{3}} );,\tan {{,}^{-1}}( \frac{1}{2} );,\tan {{,}^{-1}}( \frac{\sqrt{3}+2}{1-2\sqrt{3}} ) $

B) $ \tan {{,}^{-1}}( \sqrt{3} );,\tan {{,}^{-1}}( \frac{1}{\sqrt{3}} );,\cot {{,}^{-1}}( 0 ) $

C) $ \tan {{,}^{-1}}( \sqrt{3} );,\tan {{,}^{-1}}( 2 );,\tan {{,}^{-1}}( \frac{\sqrt{3}+2}{2\sqrt{3}-1} ) $

D) $ \tan {{,}^{-1}}( \sqrt{3} );,\tan {{,}^{-1}}( \sqrt{2} );,\tan {{,}^{-1}}( \frac{\sqrt{2}+3}{3\sqrt{2}-1} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let $ \overset{\to }{\mathop{x}},=\sqrt{3}(\overset{\to }{\mathop{a}},\times \overset{\to }{\mathop{b}},) $ and $ \overset{\to }{\mathop{y}},=\overset{\to }{\mathop{b}},-(\overset{\to }{\mathop{a}},\cdot \overset{\to }{\mathop{b}},)\overset{\to }{\mathop{a}}, $ Clearly $ \overset{\to }{\mathop{x}},\cdot \overset{\to }{\mathop{y}},=0\Rightarrow \overset{\to }{\mathop{x}}, $ and $ \overset{\to }{\mathop{y}}, $ are perpendicular So, one angle is $ \frac{\pi }{2} $ . Also $ |\overset{\to }{\mathop{x}},|=\sqrt{3}|bsin\theta | $ , where $ \theta $ is angle between vectors $ \overset{\to }{\mathop{a}}, $ and $ \overset{\to }{\mathop{b}}, $ $ (|\vec{a}|=1) $ $ |\overset{\to }{\mathop{y}},|=\sqrt{{{{ \vec{b}-(\vec{a}.\vec{b})\vec{a} }}^{2}}}=\sqrt{b^{2}-{{(\vec{a}.\vec{b})}^{2}}} $ $ =\sqrt{b^{2}-b^{2}\cos \theta }=| b\sin \theta | $
    $ \therefore \frac{|\overset{\to }{\mathop{x}},|}{|\overset{\to }{\mathop{y}},|}=\sqrt{3}=\tan \alpha \Rightarrow \alpha =\frac{\pi }{3} $ . So, $ \beta =\frac{\pi }{6} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें