Vector Algebra Question 127

Question: The vector equation of the plane through the point $ \mathbf{i}+2\mathbf{j}-\mathbf{k} $ and perpendicular to the line of intersection of the planes $ \mathbf{r}.(3\mathbf{i}-\mathbf{j}+\mathbf{k})=1 $ and $ \mathbf{i}+4\mathbf{j}-2\mathbf{k}=2 $ is

Options:

A) $ \mathbf{r}.(2\mathbf{i}+7\mathbf{j}-13\mathbf{k})=1 $

B) $ \mathbf{r}.(2\mathbf{i}-7\mathbf{j}-13\mathbf{k})=1 $

C) $ \mathbf{r}.(2\mathbf{i}+7\mathbf{j}+13\mathbf{k})=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • The line of intersection of the planes $ \mathbf{r}.(3\mathbf{i}-\mathbf{j}+\mathbf{k})=1 $ and $ \mathbf{r}.(\mathbf{i}+4\mathbf{j}-2\mathbf{k})=2 $ is common to both the planes. Therefore, it is perpendicular to normals to the two planes i.e., $ {{\mathbf{n}}_1}=3\mathbf{i}-\mathbf{j}+\mathbf{k} $ and $ {{\mathbf{n}}_2}=\mathbf{i}+4\mathbf{j}-2\mathbf{k} $ . Hence it is parallel to the vector $ {{\mathbf{n}}_1}\times {{\mathbf{n}}_2}=-2\mathbf{i}+7\mathbf{j}+13\mathbf{k}. $ Thus, we have to find the equation of the plane passing through $ \mathbf{a}=\mathbf{i}+2\mathbf{j}-\mathbf{k} $ and normal to the vector $ \mathbf{n}={{\mathbf{n}}_1}\times {{\mathbf{n}}_2} $ . The equation of the required plane is $ (\mathbf{r}-\mathbf{a}).\ \mathbf{n}=0 $ or $ \mathbf{r}.,\mathbf{n}=\mathbf{a}.\mathbf{n} $ or $ \mathbf{r}.(-2\mathbf{i}+7\mathbf{j}+13\mathbf{k}) $ = $ (\mathbf{i}+2\mathbf{j}-\mathbf{k}).(-2\mathbf{i}+7\mathbf{j}+13\mathbf{k}) $ or $ \mathbf{r}.(2\mathbf{i}-7\mathbf{j}-13\mathbf{k})=1 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें