Vector Algebra Question 128

Question: If a, b and c be three non-zero vectors, no two of which are collinear. If the vector $ \mathbf{a}+2\mathbf{b} $ is collinear with c and $ \mathbf{b}+3\mathbf{c} $ is collinear with a, then ( $ \lambda $ being some non-zero scalar) $ \mathbf{a}+2\mathbf{b}+6\mathbf{c} $ is equal to

[AIEEE 2004]

Options:

A) $ \lambda \mathbf{a} $

B) $ \lambda \mathbf{b} $

C) $ \lambda \mathbf{c} $

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let $ \mathbf{a}+2\mathbf{b}=x\mathbf{c} $ and $ \mathbf{b}+3\mathbf{c}=y\mathbf{a}, $ then $ \mathbf{a}+2\mathbf{b}+6\mathbf{c}=(x+6)\mathbf{c} $ and $ \mathbf{a}+2\mathbf{b}+6\mathbf{c}=(1+2y)\mathbf{a} $ So, $ (x+6)\mathbf{c}=(1+2y)\mathbf{a} $ Since $ \mathbf{a} $ and $ \mathbf{c} $ are non-zero and non-collinear, we have $ x+6=0 $ and $ 1+2y=0 $ i.e., $ x=-6 $ and $ y=-\frac{1}{2}. $ In either case, we have $ \mathbf{a}+2\mathbf{b}+6\mathbf{c}=\mathbf{0} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें