Vector Algebra Question 129
Question: If $ \overset{\to }{\mathop{c}}, $ is the unit vector perpendicular to both the vectors $ \overset{\to }{\mathop{a}}, $ and $ \overset{\to }{\mathop{b}}, $ , then what is another unit vector perpendicular to both the vectors $ \overset{\to }{\mathop{a}}, $ and $ \overset{\to }{\mathop{b}},? $
Options:
A) $ \overset{\to }{\mathop{c}},\times \overset{\to }{\mathop{a}}, $
B) $ \overset{\to }{\mathop{c}},\times \overset{\to }{\mathop{b}}, $
C) $ -\frac{( \overset{\to }{\mathop{a}},\times \overset{\to }{\mathop{b}}, )}{| \overset{\to }{\mathop{a}},\times \overset{\to }{\mathop{b}}, |} $
D) $ \frac{( \overset{\to }{\mathop{a}},\times \overset{\to }{\mathop{b}}, )}{| \overset{\to }{\mathop{a}},\times \overset{\to }{\mathop{b}}, |} $
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] Let $ \overset{\to }{\mathop{c}}, $ is the unit vector perpendicular to both the vectors $ \overset{\to }{\mathop{a}}, $ and $ \overset{\to }{\mathop{b}}, $ . So, A unit vector which is perpendicular to both the vectors $ \overset{\to }{\mathop{a}}, $ and $ \overset{\to }{\mathop{b}}, $ is $ \frac{( \overset{\to }{\mathop{a}},\times \overset{\to }{\mathop{b}}, )}{| \overset{\to }{\mathop{a}},\times \overset{\to }{\mathop{b}}, |} $