Vector Algebra Question 13

Question: If $\overrightarrow{F_1}=\hat{i}-\hat{j}+\hat{k}, \overrightarrow{F_2}=-\hat{i}+2 \hat{j}-\hat{k}$, $\overrightarrow{F_3}=\hat{j}-\hat{k}, \vec{A}=4 \hat{i}-3 \hat{j}-2 \hat{k}$ and $\vec{B}=6 \hat{i}+\hat{j}-3 \hat{k}$, then the scalar product of $\overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3}$ and $\overrightarrow{A B}$ will be

[Roorkee 1980]

Options:

A) 3

B) 6

C) 9

D) 12

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \Sigma ,\mathbf{F}=2\mathbf{j}-\mathbf{k}, $ $ \overrightarrow{AB}=2\mathbf{i}+4\mathbf{j}-\mathbf{k} $ , \ $ \Sigma ,\mathbf{F},.,\overrightarrow{AB}=8+1=9. $