Vector Algebra Question 130

Question: What is the vector equally inclined to the vectors $ \hat{i}+3\hat{j} $ and $ 3\hat{i}+\hat{j} $ ?

Options:

A) $ \hat{i}+\hat{j} $

B) $ 2\hat{i}-\hat{j} $

C) $ 2\hat{i}+\hat{j} $

D) None of theses

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Let the required vector be $ \hat{i}+\hat{j} $ Since the vector $ \hat{i}+\hat{j} $ is equally inclined to the vectors $ \hat{i}+3\hat{j} $ and $ 3\hat{i}+\hat{j} $ therefore angle b/w $ \hat{i}+\hat{j} $ and $ \hat{i}+3\hat{j}={\theta_1} $ is equal to angle between $ \hat{i}+\hat{j} $ and $ \hat{i}+3\hat{j} $ $ ={{\cos }^{-1}}[ \frac{(1)(1)+(1)(3)}{\sqrt{{{(1)}^{2}}+{{(1)}^{2}}}\sqrt{{{(1)}^{2}}+{{(3)}^{2}}}} ] $ $ ={{\cos }^{-1}}[ \frac{1+3}{\sqrt{2}\sqrt{10}} ]={{\cos }^{-1}}[ \frac{4}{\sqrt{2}\sqrt{10}} ] $ $ ={{\cos }^{-1}}[ \frac{2}{\sqrt{5}} ] $ and angle between $ \hat{i}+\hat{j} $ and $ (3\hat{i}+\hat{j}) $ $ ={{\cos }^{-1}}| \frac{1+3}{\sqrt{10}\sqrt{2}} | $ $ ={{\cos }^{-1}}( \frac{4}{\sqrt{2}\sqrt{10}} )={{\cos }^{-1}}( \frac{2}{\sqrt{5}} ) $ Hence, required vector is $ \hat{i}+\hat{j} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें