Vector Algebra Question 132

Question: If $ {{\vec{r}}_1}=\lambda \hat{i}+2\hat{j}+\hat{k},,{{\vec{r}}_2}=\hat{i}+(2-\lambda )\hat{j}+2\hat{k} $ are such that $ | {{{\vec{r}}}_1} |>| {{{\vec{r}}}_2} | $ , then $ \lambda $ satisfies which one of the following?

Options:

A) $ \lambda =0 $ only

B) $ \lambda =1 $

C) $ \lambda <1 $

D) $ \lambda >1 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Given. $ {{\vec{r}}_1}=\lambda \hat{i}+2\hat{j}+\hat{k} $ and $ {{\vec{r}}_1}=\hat{i}+(2-\lambda )\hat{j}+2\hat{k} $
    $ \therefore | {{{\vec{r}}}_1} |>| {{{\vec{r}}}_2} | $
    $ \Rightarrow \sqrt{{{\lambda }^{2}}+{{(2)}^{2}}+{{(1)}^{2}}}>\sqrt{{{(1)}^{2}}+{{(2-\lambda )}^{2}}+{{(2)}^{2}}} $
    $ \Rightarrow ,{{\lambda }^{2}}+4+1>1+4+{{\lambda }^{2}}-4\lambda +4 $
    $ \Rightarrow 5>9-4\lambda $
    $ \Rightarrow 4\lambda >4 $
    $ \Rightarrow \lambda >1 $