Vector Algebra Question 133

Question: The position vector of the point where the line $ \mathbf{r}=\mathbf{i}-\mathbf{j}+\mathbf{k}+t(\mathbf{i}+\mathbf{j}+\mathbf{k}) $ meets the plane $ \mathbf{r}.(\mathbf{i}+\mathbf{j}+\mathbf{k})=5 $ is

[Kerala (Engg.) 2005]

Options:

A) $ 5\mathbf{i}+\mathbf{j}-\mathbf{k} $

B) $ 5\mathbf{i}+3\mathbf{j}-3\mathbf{k} $

C) $ 2\mathbf{i}+\mathbf{j}+2\mathbf{k} $

D) $ 5\mathbf{i}+\mathbf{j}+\mathbf{k} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The point of the given line is $ (1+t,-1+t,1-t) $ Equation of plane is, $ x+y+z=5 $ The point of the given line satisfies the equation of plane
    $ \therefore $ $ (1+t)(-1+t)+(1-t)=5 $
    Þ $ 1+t=5 $
    Þ $ t=4 $ \ Points are $ (5,3,,-3) $ Hence, position vector of point is, $ 5\mathbf{i}+3\mathbf{j}-3\mathbf{k} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें