Vector Algebra Question 133

Question: The position vector of the point where the line $ \mathbf{r}=\mathbf{i}-\mathbf{j}+\mathbf{k}+t(\mathbf{i}+\mathbf{j}+\mathbf{k}) $ meets the plane $ \mathbf{r}.(\mathbf{i}+\mathbf{j}+\mathbf{k})=5 $ is

[Kerala (Engg.) 2005]

Options:

A) $ 5\mathbf{i}+\mathbf{j}-\mathbf{k} $

B) $ 5\mathbf{i}+3\mathbf{j}-3\mathbf{k} $

C) $ 2\mathbf{i}+\mathbf{j}+2\mathbf{k} $

D) $ 5\mathbf{i}+\mathbf{j}+\mathbf{k} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The point of the given line is $ (1+t,-1+t,1-t) $ Equation of plane is, $ x+y+z=5 $ The point of the given line satisfies the equation of plane
    $ \therefore $ $ (1+t)(-1+t)+(1-t)=5 $
    Þ $ 1+t=5 $
    Þ $ t=4 $ \ Points are $ (5,3,,-3) $ Hence, position vector of point is, $ 5\mathbf{i}+3\mathbf{j}-3\mathbf{k} $ .