Vector Algebra Question 134

Question: A Plane meets the co-ordinate axes at P, Q and R such that the position vector of the centroid of $ \Delta PQR $ is $ 2\mathbf{i}-5\mathbf{j}+8\mathbf{k} $ . Then the equation of the plane is

[J & K 2005]

Options:

A) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=120 $

B) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=1 $

C) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=2 $

D) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=20 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Centroid of $ \Delta PQR $ is $ 2\mathbf{i}-5\mathbf{j}+8\mathbf{k} $
    $ \therefore $ Intercepts on x, y and z axis are $ 6\mathbf{i},,-15\mathbf{j} $ and $ 24\mathbf{k} $ respectively. Hence equation of plane is, $ [\mathbf{r}-15\mathbf{j},24\mathbf{k}]+[\mathbf{r}24\mathbf{k}6\mathbf{i}]+[\mathbf{r}6\mathbf{i}-15\mathbf{j}]=[6\mathbf{i},-15\mathbf{j},24\mathbf{k}] $ $ \therefore $ $ -\mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=-120 $
    $ \therefore $ $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=120 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें