Vector Algebra Question 134

Question: A Plane meets the co-ordinate axes at P, Q and R such that the position vector of the centroid of $ \Delta PQR $ is $ 2\mathbf{i}-5\mathbf{j}+8\mathbf{k} $ . Then the equation of the plane is

[J & K 2005]

Options:

A) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=120 $

B) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=1 $

C) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=2 $

D) $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=20 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Centroid of $ \Delta PQR $ is $ 2\mathbf{i}-5\mathbf{j}+8\mathbf{k} $
    $ \therefore $ Intercepts on x, y and z axis are $ 6\mathbf{i},,-15\mathbf{j} $ and $ 24\mathbf{k} $ respectively. Hence equation of plane is, $ [\mathbf{r}-15\mathbf{j},24\mathbf{k}]+[\mathbf{r}24\mathbf{k}6\mathbf{i}]+[\mathbf{r}6\mathbf{i}-15\mathbf{j}]=[6\mathbf{i},-15\mathbf{j}24\mathbf{k}] $
    $ \therefore $ $ -\mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=-120 $
    $ \therefore $ $ \mathbf{r}.(20\mathbf{i}-8\mathbf{j}+5\mathbf{k})=120 $ .