Vector Algebra Question 136

Question: The line of intersection of the planes $ \mathbf{r}.(\mathbf{i}-3\mathbf{j}+\mathbf{k})=1 $ and $ \mathbf{r}.(2\mathbf{i}+5\mathbf{j}-3\mathbf{k})=2 $ is parallel to the vector

Options:

A) $ -4\mathbf{i}+5\mathbf{j}+11\mathbf{k} $

B) $ 4\mathbf{i}+5\mathbf{j}+11\mathbf{k} $

C) $ 4\mathbf{i}-5\mathbf{j}+11\mathbf{k} $

D) $ 4\mathbf{i}-5\mathbf{j}-11\mathbf{k} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The line of intersection of the planes $ \mathbf{r}.(\mathbf{i}-3\mathbf{j}+\mathbf{k})=1 $ and $ \mathbf{r}.(2\mathbf{i}+5\mathbf{j}-3\mathbf{k})=2 $ is perpendicular to each of the normal vectors $ {{\mathbf{n}}_1}=\mathbf{i}-3\mathbf{j}+\mathbf{k} $ and $ {{\mathbf{n}}_2}=2\mathbf{i}+5\mathbf{j}-3\mathbf{k} $
    $ \therefore $ It is parallel to the vector $ {{\mathbf{n}}_1}\times {{\mathbf{n}}_2}=(\mathbf{i}-3\mathbf{j}+\mathbf{k})\times (2\mathbf{i}+5\mathbf{j}-3\mathbf{k}) $ $ =. \begin{vmatrix} ,\mathbf{i}, \\ 1 \\ 2 \\ \end{matrix}\begin{matrix} ,\mathbf{j} \\ -3 \\ 5 \\ \end{matrix}\begin{matrix} \mathbf{k} \\ ,1 \\ -3, \\ \end{matrix} . | $ = $ 4\mathbf{i}+5\mathbf{j}+11\mathbf{k} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें