Vector Algebra Question 137

Question: The equation of plane passing through a point $ A(2,-1,,3) $ and parallel to the vectors $ \mathbf{a}=(3,,0,-1) $ and $ \mathbf{b}=(-3,2,,2) $ is

[Orissa JEE 2005]

Options:

A) $ 2x-3y+6z-25=0 $

B) $ 2x-3y+6z+25=0 $

C) $ 3x-2y+6z-25=0 $

D) $ 3x-2y+6z+25=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • As plane is parallel to a given vector Þ Normal of plane must perpendicular to the given vectors. Given point to which plane passes through is (2, ?1,3). Let A, B, C are direction ratios of its normal. \ Equation of plane is, $ A(x-2)+B(y+1)+C(z-3)=0 $ ?..(i) Now normal to plane $ A\mathbf{i}+B\mathbf{j}+C\mathbf{k} $ is perpendicular to the given vectors $ \mathbf{a}=3\mathbf{i}+0\mathbf{j}-\mathbf{k} $ and $ \mathbf{b}=-3\mathbf{i}+2\mathbf{j}+2\mathbf{k} $ \ $ 3A+0B-C=0 $ ?..(i) $ -3A+2B+2C=0 $ …..(ii) Solving (i) and (ii) we get, $ \frac{A}{2}=\frac{B}{-3}=\frac{C}{6} $ \Equation of plane be $ 2(x-2)-3(y+1)+6(z-3)=0 $ i.e., $ 2x-3y+6z-25=0 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें