Vector Algebra Question 144

Question: If the equation of a line through a point a and parallel to vector b is $ \mathbf{r}=\mathbf{a}+t,\mathbf{b}, $ where t is a parameter, then its perpendicular distance from the point c is

[MP PET 1998]

Options:

A) $ |(\mathbf{c}-\mathbf{b})\times \mathbf{a}|\div |\mathbf{a}| $

B) $ |(\mathbf{c}-\mathbf{a})\times \mathbf{b}|\div |\mathbf{b}| $

C) $ |(\mathbf{a}-\mathbf{b})\times \mathbf{c}|\div |\mathbf{c}| $

D) $ |(\mathbf{a}-\mathbf{b})\times \mathbf{c}|\div |\mathbf{a}+\mathbf{c}| $

Show Answer

Answer:

Correct Answer: B

Solution:

  • For point $ P $ on the line $ r=\mathbf{a}+t\mathbf{b} $
    $ \therefore ,\overrightarrow{PC}=(\mathbf{c}-\mathbf{a})-t\mathbf{b} $ , $ \because ,\overrightarrow{PC},\bot ,\mathbf{b} $
    $ \therefore ,|(\mathbf{c}-\mathbf{a})-t\mathbf{b}|,.,\mathbf{b}=0 $ or $ t=\frac{(\mathbf{c}-\mathbf{a}),.,\mathbf{b}}{{{\mathbf{b}}^{2}}} $ ?..(i) Distance of $ \mathbf{c} $ from line $ |\overrightarrow{PC}|\ = $ $ d=|\mathbf{c}-\mathbf{a}-t\mathbf{b}| $ $ d=| \mathbf{c}-\mathbf{a}-\frac{(\mathbf{c}-\mathbf{a}),.,\mathbf{bb}}{{{\mathbf{b}}^{2}}} |=| \frac{(\mathbf{c}-\mathbf{a}),\mathbf{b},.,\mathbf{b}-(\mathbf{c}-\mathbf{a}),.,\mathbf{bb}}{{{\mathbf{b}}^{2}}} | $ $ d=| \frac{\mathbf{b}\times (\mathbf{c}-\mathbf{a})\times \mathbf{b}}{{{\mathbf{b}}^{2}}} |=\frac{|\mathbf{b}||(\mathbf{c}-\mathbf{a})\times \mathbf{b}|\sin 90{}^\circ }{|\mathbf{b}{{|}^{2}}} $ , $ (\because ,\mathbf{b},\bot ,(\mathbf{c}-\mathbf{a})\times \mathbf{b}) $ $ d=\frac{|(\mathbf{c}-\mathbf{a})\times \mathbf{b}|}{|\mathbf{b}|} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें