Vector Algebra Question 151

Question: If a of magnitude 50 is collinear with the vector $ \mathbf{b}=6,\mathbf{i}-8,\mathbf{j}-\frac{15,\mathbf{k}}{2}, $ and makes an acute angle with the positive direction of z-axis, then the vector a is equal to

[Pb. CET 2004]

Options:

A) $ 24,\mathbf{i}-32,\mathbf{j}+30,\mathbf{k} $

B) $ -24,\mathbf{i}+32,\mathbf{j}+30,\mathbf{k} $

C) $ 16,\mathbf{i}-16,\mathbf{j}-15,\mathbf{k} $

D) $ -12,\mathbf{i}+16,\mathbf{j}-30,\mathbf{k} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let $ \mathbf{a}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k} $
    $ |\mathbf{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=50 $ , $ \mathbf{b}=6\mathbf{i}-8\mathbf{j}-\frac{15}{2}\mathbf{k} $
    Since $ \mathbf{a} $ and $ \mathbf{b} $ are collinear, so $ \mathbf{a}=k,\mathbf{b} $ and $ \frac{x}{6}=\frac{y}{-8}=\frac{2z}{-15}=k $ , (constant)

Þ $ 2500=k^{2}[ \frac{144+256+225}{4} ] $

Þ $ k=\pm \sqrt{\frac{2500\times 4}{625}}=\pm 4 $
Since $ \mathbf{a} $ makes an acute angle with the direction of
z-axis, Hence, its z-component must be positive. This is possible only when $ k=-4 $ .
\ $ \mathbf{a}=k,[ 6\mathbf{i}-8\mathbf{j}-\frac{15}{2}\mathbf{k} ] $ , $ [\because \mathbf{a}=k\mathbf{b}] $
Hence, $ \mathbf{a}=-24\mathbf{i}+32\mathbf{j}+30\mathbf{k} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें