Vector Algebra Question 153

Question: If three non-zero vectors are $ \mathbf{a}=a_1\mathbf{i}+a_2\mathbf{j}+a_3\mathbf{k}, $ $ \mathbf{b}=b_1\mathbf{i}+b_2\mathbf{j}+b_3\mathbf{k} $ and $ \mathbf{c}=c_1\mathbf{i}+c_2\mathbf{j}+c_3\mathbf{k}. $ If c is the unit vector perpendicular to the vectors a and b and the angle between a and b is $ \frac{\pi }{6}, $ then $ {{| ,\begin{matrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{matrix}, |}^{2}} $ is equal to

[IIT 1986]

Options:

A) 0

B) $ \frac{3,(\Sigma a_1^{2}),(\Sigma b_1^{2}),(\Sigma c_1^{2})}{4} $

C) 1

D) $ \frac{(\Sigma a_1^{2}),(\Sigma b_1^{2})}{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ |\mathbf{c}|,=1, $ we have $ |\mathbf{c}{{|}^{2}}=1 $ or $ c_1^{2}+c_2^{2}+c_3^{2}=1 $ …..(i)
    Again, since $ \mathbf{c},\bot ,\mathbf{a} $ and $ \mathbf{c},\bot ,\mathbf{b}, $ we have $ \mathbf{c},.,\mathbf{a}=0 $

$ \Rightarrow a_1c_1+a_2c_2+a_3c_3=0 $ …..(ii)
and $ \mathbf{c},.,\mathbf{b}=0\Rightarrow b_1c_1+b_2c_2+b_3c_3=0 $ …(iii)
Also since angle between $ \mathbf{a} $ and $ \mathbf{b} $ is $ \frac{\pi }{6}, $ we have $ \mathbf{a},.,\mathbf{b}=a_1b_1+a_2b_2+a_3b_3 $

Þ $ |\mathbf{a}|,|\mathbf{b}|\cos \frac{\pi }{6}=a_1b_1+a_2b_2+a_3b_3 $

Þ $ \frac{3}{4}(a_1^{2}+a_2^{2}+a_3^{2})(b_1^{2}+b_2^{2}+b_3^{2}) $ $ ={{(a_1b_1+a_2b_2+a_3b_3)}^{2}} $ …..(iv)
Now, $ {{ \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\end{vmatrix} }^{2}}= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\end{vmatrix} , \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix} , $
$ = \begin{vmatrix} a_1^{2}+a_2^{2}+a_3^{2} & a_1b_1+a_2b_2+a_3b_3 & 0 \\ b_1a_1+b_2a_2+b_3a_3 & b_1^{2}+b_2^{2}+b_3^{2} & 0 \\ 0 & 0 & 1 \\ \end{vmatrix} $
{Using (i), (ii) and (iii)}
$ =\frac{1}{4}(a_1^{2}+a_2^{2}+a_3^{2})(b_1^{2}+b_2^{2}+b_3^{2}) $ , {Using (iv)}
$ =\frac{(\Sigma a_1^{2})(\Sigma b_1^{2})}{4} $ ,
where $ \Sigma a_1^{2}=a_1^{2}+a_2^{2}+a_3^{2} $ and $ \Sigma b_1^{2}=b_1^{2}+b_2^{2}+b_3^{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें