Vector Algebra Question 154

Question: Let the unit vectors a and b be perpendicular and the unit vector c be inclined at an angle q to both a and b. If $ \mathbf{c}=\alpha ,\mathbf{a}+\beta ,\mathbf{b}+\gamma ,(\mathbf{a}\times \mathbf{b}), $ then

[Orissa JEE 2003]

Options:

A) $ \alpha =\beta =\cos \theta ,{{\gamma }^{2}}=\cos 2\theta $

B) $ \alpha =\beta =\cos \theta ,{{\gamma }^{2}}=-\cos 2\theta $

C) $ \alpha =\cos \theta ,\beta =\sin \theta ,{{\gamma }^{2}}=\cos 2\theta $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \mathbf{c}=\alpha ,\mathbf{a}+\beta ,\mathbf{b}+\gamma ,(\mathbf{a}\times \mathbf{b}) $
    $ \Rightarrow \mathbf{c},.,\mathbf{a}=\alpha $ and $ \mathbf{c},.,\mathbf{b}=\beta $

$ \Rightarrow \alpha =\beta =\cos \theta $
Also, $ 1=\mathbf{c},.,\mathbf{c} $ ,

$ \therefore [ \alpha ,\mathbf{a}+\beta ,\mathbf{b}+\gamma ,(\mathbf{a}\times \mathbf{b}) ],.,[ (\alpha ,\mathbf{a}+\beta ,\mathbf{b})+\gamma ,(\mathbf{a}\times \mathbf{b}) ]=1 $

$ \Rightarrow 2{{\alpha }^{2}}+{{\gamma }^{2}}{{(\mathbf{a}\times \mathbf{b})}^{2}}=1 $ ,
$ { \because \alpha ,=,\beta } $

$ \Rightarrow 2{{\alpha }^{2}}+{{\gamma }^{2}}[{{\mathbf{a}}^{2}}{{\mathbf{b}}^{2}}-{{(\mathbf{a}.\mathbf{b})}^{2}}]=1\Rightarrow 2{{\alpha }^{2}}+{{\gamma }^{2}}=1 $
Hence, $ {{\gamma }^{2}}=1-2{{\alpha }^{2}}=1-2,{{\cos }^{2}}\theta =-\cos 2\theta . $