Vector Algebra Question 156

Question: The vector $ \mathbf{a}+\mathbf{b} $ bisects the angle between the vectors a and b, if

Options:

A) $ |\mathbf{a}|,=,|\mathbf{b}| $

B) $ |\mathbf{a}|,=,|\mathbf{b}| $ or angle between a and b is zero

C) $ |\mathbf{a}|=m,|\mathbf{b}| $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • Since the angle between $ \mathbf{a}+\mathbf{b} $ and $ \mathbf{a} $ and the angle between $ \mathbf{a}+\mathbf{b} $ and $ \mathbf{b} $ are the same, so we have
    $ \frac{(\mathbf{a}+\mathbf{b}),.,\mathbf{a}}{|\mathbf{a}+\mathbf{b}|,|\mathbf{a}|}=\frac{(\mathbf{a}+\mathbf{b}),.,\mathbf{b}}{|\mathbf{a}+\mathbf{b}|,|\mathbf{b}|} $

$ \Rightarrow \frac{|\mathbf{a}{{|}^{2}}}{|\mathbf{a}+\mathbf{b}|,|\mathbf{a}|}+\frac{\mathbf{b},.,\mathbf{a}}{|\mathbf{a}+\mathbf{b}|,|\mathbf{a}|}=\frac{\mathbf{a},.,\mathbf{b}}{|\mathbf{a}+\mathbf{b}|,|\mathbf{b}|}+\frac{|\mathbf{b}{{|}^{2}}}{|\mathbf{a}+\mathbf{b}|,|\mathbf{b}|} $
$ \Rightarrow \frac{|\mathbf{a}|-|\mathbf{b}|}{|\mathbf{a}+\mathbf{b}|}( 1-\frac{\mathbf{a},.,\mathbf{b}}{|\mathbf{a}|,|\mathbf{b}|} )=0 $
Hence $ |\mathbf{a}|,=,|\mathbf{b}| $ or angle between $ \mathbf{a} $ and $ \mathbf{b} $ is 0.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें