Vector Algebra Question 16

Question: If $ 3\lambda \vec{c}+2\mu (\vec{a}\times \vec{b})=0 $ , then

Options:

A) $ 3\lambda +2\mu =0 $

B) $ 3\lambda =2\mu $

C) $ \lambda =\mu $

D) $ \lambda +\mu =0 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ 3\lambda \vec{c}+2\mu (\vec{a}\times \vec{b})=0 $
    $ \Rightarrow 3\lambda \vec{c}=-2\mu (\vec{a}\times \vec{b}) $ So, one possibility is $ \vec{c} $ and $ (\vec{a}\times \vec{b}) $ are non-collinear.
    $ \Rightarrow 3\lambda =2\mu $