Vector Algebra Question 162

Question: Let $ \mathbf{a}=2\mathbf{i}-\mathbf{j}+\mathbf{k},\mathbf{b}=\mathbf{i}+2\mathbf{j}-\mathbf{k} $ and $ \mathbf{c}=\mathbf{i}+\mathbf{j}-2\mathbf{k} $ be three vectors. A vector in the plane of b and c whose projection on a is of magnitude $ \sqrt{2/3} $ is

[IIT 1993; Pb. CET 2004]

Options:

A) $ 2\mathbf{i}+3\mathbf{j}-3\mathbf{k} $

B) $ 2\mathbf{i}+3\mathbf{j}+3\mathbf{k} $

C) $ -,2\mathbf{i}-\mathbf{j}+5\mathbf{k} $

D) $ 2\mathbf{i}+\mathbf{j}+5\mathbf{k} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Any vector $ \mathbf{r} $ in the plane of $ \mathbf{b} $ and $ \mathbf{c} $ is $ \mathbf{r}=\mathbf{b}+t\mathbf{c} $ or $ \mathbf{r}=(1+t)\mathbf{i}+(2+t)\mathbf{j}-(1+2t)\mathbf{k} $ ……(i)
    Projection of $ \mathbf{r} $ on $ \mathbf{a} $ is $ \sqrt{( \frac{2}{3} )}\Rightarrow \frac{\mathbf{r},.,\mathbf{a}}{|\mathbf{a}|}=\sqrt{( \frac{2}{3} )} $
    or $ \frac{2(1+t)-(2+t)-(1+2t)}{\sqrt{6}}=\pm \sqrt{( \frac{2}{3} )} $
    \ $ ,-t-1=\pm 2\Rightarrow t=-3,1 $
    Projection in (i),we get

$ \therefore ,\mathbf{r}=-2\mathbf{i}-\mathbf{j}+5\mathbf{k} $ or $ \mathbf{r}=2\mathbf{i}+3\mathbf{j}-3\mathbf{k} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें