Vector Algebra Question 163

Question: A vector a has components 2p and 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the anti-clockwise sense. If a has components p+1 and 1 with respect to the new system, then

[IIT 1984]

Options:

A) $ p=0 $

B) $ p=1 $ or $ -\frac{1}{3} $

C) $ p=-1 $ or $ \frac{1}{3} $

D) $ p=1 $ or $ -1 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • If $ x,y $ are the original components; $ X,Y $ the new components and $ \alpha $ is the angle of rotation, then $ x=X\cos \alpha -Y\sin \alpha $ and $ y=X\sin \alpha +Y\cos \alpha $

$ \therefore ,2p=(p+1)\cos \alpha -\sin \alpha $ and $ 1=(p+1)\sin \alpha +\cos \alpha $
Squaring and adding, we get $ 4p^{2}+1={{(p+1)}^{2}}+1 $

$ \Rightarrow p+1=\pm 2p\Rightarrow p=1 $ or $ -\frac{1}{3}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें