Vector Algebra Question 163

Question: A vector a has components 2p and 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the anti-clockwise sense. If a has components p+1 and 1 with respect to the new system, then

[IIT 1984]

Options:

A) $ p=0 $

B) $ p=1 $ or $ -\frac{1}{3} $

C) $ p=-1 $ or $ \frac{1}{3} $

D) $ p=1 $ or $ -1 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • If $ x,y $ are the original components; $ X,Y $ the new components and $ \alpha $ is the angle of rotation, then $ x=X\cos \alpha -Y\sin \alpha $ and $ y=X\sin \alpha +Y\cos \alpha $

$ \therefore ,2p=(p+1)\cos \alpha -\sin \alpha $ and $ 1=(p+1)\sin \alpha +\cos \alpha $
Squaring and adding, we get $ 4p^{2}+1={{(p+1)}^{2}}+1 $

$ \Rightarrow p+1=\pm 2p\Rightarrow p=1 $ or $ -\frac{1}{3}. $