Vector Algebra Question 165

Question: If $ \mathbf{u}=2,\mathbf{i}+2\mathbf{j}-\mathbf{k} $ and $ \mathbf{v}=6,\mathbf{i}-3,\mathbf{j}+2,\mathbf{k}, $ then a unit vector perpendicular to both u and v is

[MP PET 1987]

Options:

A) $ \mathbf{i}-10\mathbf{j}-18\mathbf{k} $

B) $ \frac{1}{\sqrt{17}},( \frac{1}{5}\mathbf{i}-2\mathbf{j}-\frac{18}{5}\mathbf{k} ) $

C) $ \frac{1}{\sqrt{473}},(7\mathbf{i}-10\mathbf{j}-18\mathbf{k}) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \mathbf{u}=2\mathbf{i}+2\mathbf{j}-\mathbf{k} $ and $ \mathbf{v}=6\mathbf{i}-3\mathbf{j}+2\mathbf{k} $
    Let vector $ \mathbf{c}=c_1\mathbf{i}+c_2\mathbf{j}+c_3\mathbf{k} $ is perpendicular to both $ \mathbf{u} $ and $ \mathbf{v}, $ then $ \mathbf{c},.,\mathbf{u}=0 $

$ \Rightarrow 2c_1+2c_2-c_3=0 $ …(i)
and $ \mathbf{c},.,\mathbf{v}=0\Rightarrow 6c_1-3c_2+2c_3=0 $ …(ii)
Solving equation (i) and (ii) by cross multiplication
$ \frac{c_1}{4-3}=\frac{c_2}{-6-4}=\frac{c_3}{-6-12}=\lambda $ , (say)

$ \Rightarrow \frac{c_1}{1}=\frac{c_2}{-10}=\frac{c_3}{-18}=\lambda $

$ \Rightarrow c_1=\lambda , $ $ c_2=-10\lambda $ and $ c_3=-18\lambda $
Thus $ \mathbf{c}=\lambda (\mathbf{i}-10\mathbf{j}-18\mathbf{k}) $
$ |\mathbf{c}|=\lambda \sqrt{1+100+324}=\lambda \sqrt{425} $
Hence required unit vector is, $ \frac{\mathbf{c}}{|\mathbf{c}|} $
$ =\frac{\lambda (\mathbf{i}-10\mathbf{j}-18\mathbf{k})}{\lambda \sqrt{425}}=\frac{1}{\sqrt{425}}(\mathbf{i}-10\mathbf{j}-18\mathbf{k}) $ = $ \frac{1}{5\sqrt{17}}(\mathbf{i}-10\mathbf{j}-18\mathbf{k})=\frac{1}{\sqrt{17}}( \frac{1}{5}\mathbf{i}-2\mathbf{j}-\frac{18}{5}\mathbf{k} ) $ Aliter : Required vector is $ \frac{\mathbf{u}\times \mathbf{v}}{|\mathbf{u}\times \mathbf{v}|}=\frac{\mathbf{i}-10\mathbf{j}-18\mathbf{k}}{\sqrt{425}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें