Vector Algebra Question 172

Question: The position vectors of the vertices of a quadrilateral ABCD are $ a,,b,,c $ and d respectively. Area of the quadrilateral formed by joining the middle points of its sides is

[Roorkee 2000]

Options:

A) $ \frac{1}{4},|a\times b+b\times d+d\times a| $

B) $ \frac{1}{4},| b\times c+c\times d+a\times d+b\times a | $

C) $ \frac{1}{4},| a\times b+b\times c+c\times d+d\times a | $

D) $ \frac{1}{4}|\text{ b }\times\text{ c+c }\times\text{ d+d }\times\text{ b }| $ .

Show Answer

Answer:

Correct Answer: C

Solution:

  • It is given that $ \mathbf{a},\mathbf{b},\mathbf{c} $ and $ \mathbf{d} $ are the position vectors of vertices of a quadrilateral ABCD respectively.
    Let E, F, G and H are the middle points of sides AB, BC, CD and DA respectively.
    The position vectors of these points will be $ \overrightarrow{OE}=\frac{1}{2}(\mathbf{a}+\mathbf{b}),,\overrightarrow{OF}=\frac{1}{2}(\mathbf{b}+\mathbf{c}) $ ,
    $ \overrightarrow{OG}=\frac{1}{2}(\mathbf{c}+\mathbf{d}),,\overrightarrow{OH}=\frac{1}{2}(\mathbf{a}+\mathbf{d}) $
    Then $ \overrightarrow{EF}=\overrightarrow{OF}-\overrightarrow{OE}=( \frac{\mathbf{c}-\mathbf{a}}{2} ) $
    and $ \overrightarrow{FG}=\frac{1}{2}(\mathbf{d}-\mathbf{b}),\overrightarrow{GH}=\frac{1}{2}(\mathbf{a}-\mathbf{c}),,\overrightarrow{GH}=\frac{1}{2}(\mathbf{b}-\mathbf{d}) $
    It is clear that $ \overrightarrow{EF} $ is parallel to $ \overrightarrow{GH} $ and $ \overrightarrow{FG} $ is parallel to $ \overrightarrow{HE} $ . Thus EFGH is a parallelogram.

$ \therefore ,\overrightarrow{EF}\times \overrightarrow{FG}=\frac{1}{4}{(\mathbf{c}-\mathbf{a})\times (\mathbf{d}-\mathbf{b})} $
$ =\frac{1}{4}(\mathbf{c}\times \mathbf{d}-\mathbf{c}\times \mathbf{b}-\mathbf{a}\times \mathbf{d}+\mathbf{a}\times \mathbf{b}) $
$ =\frac{1}{4}(\mathbf{a}\times \mathbf{b}+\mathbf{b}\times \mathbf{c}+\mathbf{c}\times \mathbf{d}+\mathbf{d}\times \mathbf{a}) $
$ \therefore $
Area of parallelogram EFGH is,
$ A=|\overline{EF}\times \overline{FG}| $ $ =\frac{1}{4}|\mathbf{a}\times \mathbf{b}+\mathbf{b}\times \mathbf{c}+\mathbf{c}\times \mathbf{d}+\mathbf{d}\times \mathbf{a}| $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें