Vector Algebra Question 175

Question: If the vectors $ a\mathbf{i}+\mathbf{j}+\mathbf{k},\mathbf{i}+b\mathbf{j}+\mathbf{k} $ and $ \mathbf{i}+\mathbf{j}+c\mathbf{k} $ $ (a\ne b\ne c\ne 1) $ are coplanar, then the value of $ \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}= $

[BIT Ranchi 1988; RPET 1987; IIT 1987; DCE 2001; MP PET 2004; Orissa JEE 2005]

Options:

A) - 1

B) $ -\frac{1}{2} $

C) $ \frac{1}{2} $

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

  • Since $ \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \\ \end{vmatrix} =0 $
    Applying $ R_2\to R_2-R_1 $ and $ R_3\to R_3-R_1, $
    we get $ \begin{vmatrix} a & 1 & 1 \\ 1-a & b-1 & 0 \\ 1-a & 0 & c-1 \\ \end{vmatrix} =0 $
    On expanding, we get
    $ a(b-1)(c-1)-(1-a)(c-1)-(1-a)(b-1)=0 $
    On dividing by $ (1-a)(1-b)(1-c), $ we get $ \frac{a}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=0 $

$ \Rightarrow \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=\frac{1}{1-a}-\frac{a}{1-a}=1. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें