Vector Algebra Question 184

Question: If b and c are any two non-collinear unit vectors and a is any vector, then $ (\mathbf{a},.,\mathbf{b}),\mathbf{b}+(\mathbf{a},.,\mathbf{c}),\mathbf{c}+\frac{\mathbf{a},.,(\mathbf{b}\times \mathbf{c})}{|\mathbf{b}\times \mathbf{c}|},(\mathbf{b}\times \mathbf{c})= $

[IIT 1996]

Options:

A) a

B) b

C) c

D) 0

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let $ \mathbf{i} $ be a unit vector in the direction of $ \mathbf{b},,\mathbf{j} $ in the direction of $ \mathbf{c}. $ Note that $ \mathbf{b}=\mathbf{i} $ and $ \mathbf{c}=\mathbf{j} $
    We have $ \mathbf{b}\times \mathbf{c}=,|\mathbf{b}||\mathbf{c}|\sin \alpha ,\mathbf{k}=\sin \alpha ,\mathbf{k} $ , where $ \mathbf{k} $ is a unit vector perpendicular to $ \mathbf{b} $ and $ \mathbf{c}. $

$ \Rightarrow ,|\mathbf{b}\times \mathbf{c}|,=\sin \alpha \Rightarrow \mathbf{k}=\frac{\mathbf{b}\times \mathbf{c}}{|\mathbf{b}\times \mathbf{c}|} $ Any vector $ \mathbf{a} $ can be written as a linear combination of $ \mathbf{i},\mathbf{j} $ and $ \mathbf{k}. $
Let $ \mathbf{a}=a_1\mathbf{i}+a_2\mathbf{j}+a_3\mathbf{k}. $
Now $ \mathbf{a},.,\mathbf{b}=\mathbf{a},.,\mathbf{i}=a_1, $ $ \mathbf{a},.,\mathbf{c}=\mathbf{a},.,\mathbf{j}=a_2 $ and $ \mathbf{a},.\frac{\mathbf{b}\times \mathbf{c}}{|\mathbf{b}\times \mathbf{c}|}=\mathbf{a},.,\mathbf{k}=a_3 $
Thus $ (\mathbf{a},.,\mathbf{b})\mathbf{b}+(\mathbf{a},.,\mathbf{c})\mathbf{c}+\frac{\mathbf{a},.,(\mathbf{b}\times \mathbf{c})}{|\mathbf{b}\times \mathbf{c}|}(\mathbf{b}\times \mathbf{c}| $
$ =a_1\mathbf{b}+a_2\mathbf{c}+a_3\frac{(\mathbf{b}\times \mathbf{c})}{|\mathbf{b}\times \mathbf{c}|}=a_1\mathbf{i}+a_2\mathbf{j}+a_3\mathbf{k}=\mathbf{a} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें