Vector Algebra Question 187

Question: Unit vectors a, b and c are coplanar. A unit vector d is perpendicular to them. If $ (\mathbf{a}\times \mathbf{b})\times (\mathbf{c}\times \mathbf{d})=\frac{1}{6}\mathbf{i}-\frac{1}{3}\mathbf{j}+\frac{1}{3}\mathbf{k} $ and the angle between a and b is $ 30^{o} $ , then c is

[Roorkee Qualifying 1998]

Options:

A) $ \frac{(\mathbf{i}-2\mathbf{j}+2\mathbf{k})}{3} $

B) $ \frac{(2\mathbf{i}+\mathbf{j}-\mathbf{k})}{3} $

C) $ \frac{(-\mathbf{i}+2\mathbf{j}-2\mathbf{k})}{3} $

D) $ \frac{(-\mathbf{i}+2\mathbf{j}+\mathbf{k})}{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Since $ \mathbf{a},,\mathbf{b},,\mathbf{c} $ are coplanar, hence $ [\mathbf{a}\mathbf{b}\mathbf{c}]=0 $
    Given $ (\mathbf{a}\times \mathbf{b})\times (\mathbf{c}\times \mathbf{d})=\frac{1}{6}\mathbf{i}-\frac{1}{3}\mathbf{j}+\frac{1}{3}\mathbf{k} $

$ \Rightarrow [(\mathbf{a}\times \mathbf{b}),.,\mathbf{d}],\mathbf{c}-[(\mathbf{a}\times \mathbf{b}),.,\mathbf{c}]\mathbf{d}=\frac{1}{6}\mathbf{i}-\frac{1}{3}\mathbf{j}+\frac{1}{3}\mathbf{k} $

$ \Rightarrow [(|\mathbf{a}||\mathbf{b}|\sin 30{}^\circ ),\mathbf{\hat{n}},.,\mathbf{d}],\mathbf{c}-0=\frac{1}{6}\mathbf{i}-\frac{1}{3}\mathbf{j}+\frac{1}{3}\mathbf{k} $

$ \Rightarrow [ (1)(1)( \frac{1}{2} ) ][|\mathbf{\hat{n}}||\mathbf{d}|\cos \theta ],\mathbf{c}=\frac{1}{6}\mathbf{i}-\frac{1}{3}\mathbf{j}+\frac{1}{3}\mathbf{k} $

$ \Rightarrow [(\mathbf{a}\times \mathbf{b}),.,\mathbf{d}],\mathbf{c}-[(\mathbf{a}\times \mathbf{b}),.,\mathbf{c}]\mathbf{d}=\frac{1}{6}\mathbf{i}-\frac{1}{3}\mathbf{j}+\frac{1}{3}\mathbf{k} $ ,
Where $ \mathbf{\hat{n}} $ and $ \mathbf{d} $ are unit perpendicular vector and angle between $ \mathbf{\hat{n}} $ and $ \mathbf{d} $ may be 0 or $ \pi $ .
When $ \theta =0{}^\circ , $ $ \mathbf{c}=\frac{1}{3}[\mathbf{i}-2\mathbf{j}+2\mathbf{k}] $
When $ \theta =\pi , $ $ \mathbf{c}=\frac{1}{3}[-\mathbf{i}+2\mathbf{j}-2\mathbf{k}] $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें