Vector Algebra Question 190

Question: If $ |\mathbf{a}|=3,,|\mathbf{b}|=1,|\mathbf{c}|=4 $ and $ \mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}, $ then $ \mathbf{a},.,\mathbf{b}+\mathbf{b},.,\mathbf{c}+\mathbf{c},.,\mathbf{a}= $

[MP PET 1995; RPET 2000]

Options:

A) ? 13

B) ? 10

C) 13

D) 10

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ {{(\mathbf{a}+\mathbf{b}+\mathbf{c})}^{2}}=0 $
    Þ $ |\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}+|\mathbf{c}{{|}^{2}}+2,\mathbf{a}.\mathbf{b}+2,\mathbf{b}.\mathbf{c}+2,\mathbf{c}.\mathbf{a}=0 $
    Þ $ 9+1+16+2(\mathbf{a}.\mathbf{b}+\mathbf{b}.\mathbf{c}+\mathbf{c}.\mathbf{a})=0 $
    Þ $ \mathbf{a}.\mathbf{b}+\mathbf{b}.\mathbf{c}+\mathbf{c}.\mathbf{a}=-\frac{26}{2}=-13. $