Vector Algebra Question 191
Question: The radius of the circular section of the sphere $ |\mathbf{r}|,=5 $ by the plane $ \mathbf{r},.,(\mathbf{i}+\mathbf{j}+\mathbf{k})=3\sqrt{3} $ is
[DCE 1999]
Options:
A) 1
B) 2
C) 3
D) 4
Show Answer
Answer:
Correct Answer: D
Solution:
- The centre of the sphere   $ |r|,=5 $    is at the origin and radius  $ =5 $   . Let M be the foot of perpendicular from O to the given plane.  Then OM = length of perpendicular from O to the given plane   $ =\frac{|\overrightarrow{OM},.,(i+j+k)-3\sqrt{3}|}{|i+j+k|} $
 $ =\frac{3\sqrt{3}}{\sqrt{1^{2}+1^{2}+1^{2}}}=3 $
 Let P be any position of circle, then P lies on plane as well as on sphere.
$ \therefore  $    OP = radius of sphere = 5                
In   $ \Delta OPM $   , we have   $ OP^{2}=OM^{2}+PM^{2} $
$ \Rightarrow PM=\sqrt{5^{2}-3^{2}}=4 $ .
 
             
             
           
           
          