Vector Algebra Question 198

Question: Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies equation $ \mathbf{p}\times {(\mathbf{x}-\mathbf{q})\times \mathbf{p}}+\mathbf{q}\times {(\mathbf{x}-\mathbf{r})\times \mathbf{q}}+\mathbf{r}\times {(\mathbf{x}-\mathbf{p})\times \mathbf{r}}=0, $ then x is given by

[IIT 1997 Cancelled]

Options:

A) $ \frac{1}{2},(\mathbf{p}+\mathbf{q}-2\mathbf{r}) $

B) $ \frac{1}{2}(\mathbf{p}+\mathbf{q}+\mathbf{r}) $

C) $ \frac{1}{3}(\mathbf{p}+\mathbf{q}+\mathbf{r}) $

D) $ \frac{1}{3}(2\mathbf{p}+\mathbf{q}-\mathbf{r}) $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ |\mathbf{p}|,=,|\mathbf{q}|,=,|\mathbf{r}|,=c $ , (say)
    and $ \mathbf{p}.\mathbf{q}=0=\mathbf{p}.\mathbf{r}=\mathbf{q}.\mathbf{r} $
    $ \mathbf{p}\times |(\mathbf{x}-\mathbf{q})\times \mathbf{p}|+\mathbf{q}\times |(\mathbf{x}-\mathbf{r})\times \mathbf{q}|+\mathbf{r}\times |(\mathbf{x}-\mathbf{p})\times \mathbf{r}|=0 $

$ \Rightarrow (\mathbf{p}.\mathbf{p})(\mathbf{x}-\mathbf{q})-{\mathbf{p}.(\mathbf{x}-\mathbf{q})}\mathbf{p}+………=0 $

$ \Rightarrow c^{2}(\mathbf{x}-\mathbf{q}+\mathbf{x}-\mathbf{r}+\mathbf{x}-\mathbf{p})-(\mathbf{p}.\mathbf{x})\mathbf{p}-(\mathbf{q}.\mathbf{x})\mathbf{q}-(\mathbf{r}.\mathbf{x})\mathbf{r}=0 $

$ \Rightarrow c^{2}{3\mathbf{x}-(\mathbf{p}+\mathbf{q}+\mathbf{r})}-[(\mathbf{p}.\mathbf{x})\mathbf{p}+(\mathbf{q}.\mathbf{x})\mathbf{q}+(\mathbf{r}.\mathbf{x})\mathbf{r}]=0 $
Which is satisfied by $ \mathbf{x}=\frac{1}{2}(\mathbf{p}+\mathbf{q}+\mathbf{r}) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें