Vector Algebra Question 2

Question: If a unit vector lies in yz?plane and makes angles of $ 30^{o} $ and $ 60^{o} $ with the positive y-axis and z-axis respectively, then its components along the co-ordinate axes will be

Options:

A) $ \frac{\sqrt{3}}{2},\frac{1}{2},,0 $

B) $ 0,\frac{\sqrt{3}}{2},\frac{1}{2} $

C) $ \frac{\sqrt{3}}{2},0,\frac{1}{2} $

D) $ 0,\frac{1}{2},,\frac{\sqrt{3}}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let unit vector be $ y\mathbf{i}+z\mathbf{k}, $ then $ \sqrt{y^{2}+z^{2}}=1 $ ?..(i) Since given that $ \cos 30{}^\circ =\frac{(y\mathbf{j}+z\mathbf{k}),.,(y\mathbf{j})}{|y\mathbf{j}+z\mathbf{k}||y\mathbf{j}|} $
    $ \Rightarrow \frac{y^{2}}{( \sqrt{y^{2}+z^{2}} ),y}=\frac{\sqrt{3}}{2}\Rightarrow y=\frac{\sqrt{3}}{2} $ , $ (\because ,\sqrt{y^{2}+z^{2}}=1 $ by (i)) Similarly, $ \cos 60{}^\circ =\frac{(y\mathbf{j}+z\mathbf{k}),.,z\mathbf{k}}{|y\mathbf{j}+z\mathbf{k}||z\mathbf{k}|}\Rightarrow z=\frac{1}{2} $ Hence the components of unit vector are $ 0,\frac{\sqrt{3}}{2},\frac{1}{2}. $ Trick : Since the vector lies in $ yz- $ plane, so it will be either $ 0\mathbf{i}+\frac{\sqrt{3}}{2}\mathbf{j}+\frac{1}{2}\mathbf{k} $ or $ 0\mathbf{i}+\frac{1}{2}\mathbf{j}+\frac{\sqrt{3}}{2}\mathbf{k}. $ But the vector $ \frac{\sqrt{3}}{2}\mathbf{j}+\frac{1}{2}\mathbf{k} $ makes angle $ 30{}^\circ $ with $ y- $ axis and that of $ 60{}^\circ $ with z-axis.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें