Vector Algebra Question 200

Question: A vector $ \mathbf{n} $ of magnitude 8 units is inclined to x-axis at $ 45^{o} $ , y-axis at $ 60^{o} $ and an acute angle with z-axis. If a plane passes through a point $ (\sqrt{2},,-1,,1) $ and is normal to $ \mathbf{n} $ , then its equation in vector form is

Options:

A) $ \mathbf{r}.(\sqrt{2}\mathbf{i}+\mathbf{j}+\mathbf{k})=4 $

B) $ \mathbf{r}.(\sqrt{2}\mathbf{i}+\mathbf{j}+\mathbf{k})=2 $

C) $ \mathbf{r}.(\mathbf{i}+\mathbf{j}+\mathbf{k})=4 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let $ \gamma $ be the angle made by $ \mathbf{n} $ with z-axis. Then direction cosines of $ \mathbf{n} $ are $ l=\cos 45^{o}=\frac{1}{\sqrt{2}}, $ $ m=\cos 60^{o}=\frac{1}{2} $ and $ n=\cos \gamma $ . \ $ l^{2}+m^{2}+n^{2}=1\Rightarrow {{( \frac{1}{\sqrt{2}} )}^{2}}+{{( \frac{1}{2} )}^{2}}+n^{2}=1 $
    Þ $ n^{2}=\frac{1}{4}\Rightarrow n=\frac{1}{2} $ , [ $ \because $ $ \gamma $ is acute, \ $ n=\cos \gamma >0 $ ] We have $ |\mathbf{n}|=8 $ , \ $ \mathbf{n}=|\mathbf{n}|(l\mathbf{i}+m\mathbf{j}+n\mathbf{k}) $
    $ \Rightarrow \mathbf{n}=8( \frac{1}{\sqrt{2}}\mathbf{i}+\frac{1}{2}\mathbf{j}+\frac{1}{2}\mathbf{k} ) $ $ =4\sqrt{2}\mathbf{i}+4\mathbf{j}+4\mathbf{k} $ The required plane passes through the point $ (\sqrt{2},-1,,1) $ having position vector $ \mathbf{a}=\sqrt{2}\mathbf{i}-\mathbf{j}+\mathbf{k} $ . So, its vector equation is $ (\mathbf{r}-\mathbf{a}).\mathbf{n}=0 $ or $ \mathbf{r}.,\mathbf{n}=\mathbf{a}.,\mathbf{n} $
    Þ $ \mathbf{r}.(4\sqrt{2}\mathbf{i}+4\mathbf{j}+4\mathbf{k})=(\sqrt{2}\mathbf{i}-\mathbf{j}+\mathbf{k}).(4\sqrt{2}\mathbf{i}+4\mathbf{j}+4\mathbf{k}) $
    Þ $ \mathbf{r}.(\sqrt{2}\mathbf{i}+\mathbf{j}+\mathbf{k})=2 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें