Vector Algebra Question 205

Question: Given three vectors $ \vec{a}=6\hat{i}-3\hat{j},\hat{b}=2\hat{i}-6\hat{j} $ and $ \vec{c}=-2\hat{i}+21\hat{j} $ such that $ \overrightarrow{\alpha }=\vec{a}+\vec{b}+\vec{c} $ . Then the resolution of the vector $ \overrightarrow{\alpha } $ into components with respect to $ \vec{a} $ and $ \vec{b} $ is given by

Options:

A) $ 3\vec{a}-2\vec{b} $

B) $ 3\vec{b} $ $ - $ $ 2\vec{a} $

C) $ 2\vec{a}-3\vec{b} $

D) $ \vec{a}-2\vec{b} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \vec{\alpha }=\vec{a}+\vec{b}+\vec{c}=6\hat{i}+12\hat{j} $ Let $ \vec{\alpha }=x\vec{a}+y\vec{b}\Rightarrow 6x+2y=6 $ And $ -,3x-6y=12 $
    $ \therefore x=2,y=-3 $
    $ \therefore \vec{\alpha }=2\vec{a}-3\vec{b} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें