Vector Algebra Question 206

Question: If $ \vec{a} $ and $ \vec{b} $ are two unit vectors and $ \theta $ is the angle between them, then the unit vector along the angular bisector of $ \vec{a} $ and $ \vec{b} $ will be given by

Options:

A) $ \frac{\vec{a}-\vec{b}}{2\cos (\theta /2)} $

B) $ \frac{\vec{a}+\vec{b}}{2\cos (\theta /2)} $

C) $ \frac{\vec{a}-\vec{b}}{\cos (\theta /2)} $

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

Vector in the direction of angular bisector of $ \vec{a} $ and $ \vec{b} $ is $ \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} $ . Unit vector in this direction is $ \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} $ . From the figure, position vector of E is $ \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} $ Now in triangle $ AEB,AE=AB\cos \frac{\theta }{2} $ $ \Rightarrow | \frac{\vec{a}+\vec{b}}{2} |=\cos \frac{\theta }{2} $ Hence, unit vector along the bisector is $ \frac{\vec{a}+\vec{b}}{2|\cos (\theta /2)|} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें