Vector Algebra Question 208

In triangle ABC, $ \angle A=30{}^\circ $ , H is the orthocentre and D is the midpoint of BC. Segment HD is produced to T such that HD = DT. The length AT is equal to

Options:

A) 2BC

B) 3 BCE

C) $ \frac{4}{3} $ BC

D) none of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let the origin of reference be the circumcenter of the triangle. Let $ \overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow{b},\overrightarrow{OC}=\overrightarrow{c} $ and $ \overrightarrow{OT}=\overrightarrow{t} $ Then $ |\overrightarrow{a}|=|\overrightarrow{b}|=|\overrightarrow{c}|=R $ (circumradius) Again $ \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA}+2\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{AH}=\overrightarrow{OH} $ Therefore, the P.V. of H is $ \vec{a}+\vec{b}+\vec{c} $ . Since D is the midpoint of HT, we have $ \frac{\vec{a}+\vec{b}+\vec{c}+\vec{t}}{2}=\frac{\vec{b}+\vec{c}}{2}\Rightarrow \vec{t}=-\vec{a} $ $ \therefore \overrightarrow{AT}=-2\overrightarrow{a} $ or $ \overrightarrow{AT}=| -2\vec{a} |=2| {\vec{a}} |=2R. $ But $ BC=2R\sin A; $ therefore, AT=2BC



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें