Vector Algebra Question 210

Question: Find the value of $ \lambda $ so that the points P, Q, R and S on the sides OA, OB, OC and AB, respectively, of a regular tetrahedron OABC are coplanar. It is given that $ \frac{OP}{OA}=\frac{1}{3},\frac{OQ}{OB}=\frac{1}{2},\frac{QR}{OC}=\frac{1}{3} $ and $ \frac{OS}{AB}=\lambda $ .

Options:

A) $ \lambda =\frac{1}{2} $

B) $ \lambda =-1 $

C) $ \lambda =0 $

D) for no value of $ \lambda $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let $ \overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow{b} $ and $ \overrightarrow{OC}=\overrightarrow{c} $ , Then $ \overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a} $ and $ \overrightarrow{OP}=\frac{1}{3}\overrightarrow{a,} $ $ \overrightarrow{OQ}=\frac{1}{2}\overrightarrow{b,}\overrightarrow{OR}=\frac{1}{3}\overrightarrow{c.} $ Since P, Q, R and S are coplanar, then $ \overrightarrow{PS}=\alpha \overrightarrow{PQ}+\beta \overrightarrow{PR} $ ( $ \overrightarrow{PS} $ can be written as a linear combination of $ \overrightarrow{PQ} $ and $ \overrightarrow{PR} $ ) $ \alpha (\overrightarrow{OQ}-\overrightarrow{OP})+\beta (\overrightarrow{OR}-\overrightarrow{OP}) $ $ i.e.,\overrightarrow{OS}-\overrightarrow{OP}=-(\alpha +\beta )\frac{{\vec{a}}}{3}+\frac{\alpha }{2}\vec{b}+\frac{\beta }{3}\vec{c} $
    $ \Rightarrow \overrightarrow{OS}=(1-\alpha -\beta )\frac{{\vec{a}}}{3}+\frac{\alpha }{2}\vec{b}+\frac{\beta }{3}\vec{c} $ …(i) Given $ \overrightarrow{OS}=\lambda \overrightarrow{AB}=\lambda (\vec{b}-\vec{a}) $ …(ii) From (i) and (ii), $ \beta =0,\frac{1-\alpha }{3}=-\lambda $ and $ \frac{\alpha }{2}=\lambda $
    $ \Rightarrow 2\lambda =1+3\lambda $ Or $ \lambda =-1 $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें