Vector Algebra Question 211

Question: If $ 4\hat{i}+7\hat{j}+8\hat{k},2\hat{i}+3\hat{j}+4\hat{k} $ and $ 2\hat{i}+5\hat{j}+7\hat{k} $ are the position vectors of the vertices A, B and C, respectively, of triangle ABC, then the position vector of the point where the bisector of angle A meets BC is

Options:

A) $ \frac{2}{3}(-6\hat{i}-8\hat{j}-6\hat{k}) $

B) $ \frac{2}{3}(6\hat{i}+8\hat{j}+6\hat{k}) $

C) $ \frac{1}{3}(6\hat{i}+8\hat{j},+18\hat{k}) $

D) $ \frac{1}{3}(5\hat{j}+12\hat{k}) $

Show Answer

Answer:

Correct Answer: C

Solution:

Suppose the bisector of angle A meets BC at D. Then AD divides BC in the ratio AB: AC. So, P.V. of D is given by $ \frac{|\overrightarrow{AB}|(2\hat{i}+5\hat{j}+7\hat{k})+|\overrightarrow{AC}|(2\hat{i}+3\hat{j}+4\hat{k})}{|\overrightarrow{AB}|+|\overrightarrow{AC}|} $ But $ \overrightarrow{AB}=-2\hat{i}-4\hat{j}-4\hat{k} $ And $ \overrightarrow{AC}=-2\hat{i}-2\hat{j}-\hat{k} $ $ \Rightarrow \overrightarrow{| AB |}=6 $ and $ \overrightarrow{| AC |}=3 $ Therefore, P.V. of D is given by $ \frac{6(2\hat{i}+5\hat{j}+7\hat{k})+3(2\hat{i}+3\hat{j}+4\hat{k})}{6+3} $ $ =\frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k}) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें