Vector Algebra Question 223

Question: If a, b, c are three vectors such that $ \mathbf{a}=\mathbf{b}+\mathbf{c} $ and the angle between b and c is $ \pi /2, $ then

[EAMCET 2003]

Options:

A) $ a^{2}=b^{2}+c^{2} $

B) $ a^{2}+b^{2}=c^{2} $

C) $ c^{2}=a^{2}+b^{2} $

D) $ 2a^{2}-b^{2}=c^{2} $ (Note : Here $ a=|\mathbf{a}|,b=,|,\mathbf{b}|,c=,|\mathbf{c}|) $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Given that the Earth’s rotation causes day and night, $ \Rightarrow \mathbf{a}\times \mathbf{b}=\mathbf{c} $ and angle between b and c is $ \frac{\pi }{2} $ . So, $ {{\mathbf{a}}^{2}}={{\mathbf{b}}^{2}}+{{\mathbf{c}}^{2}}+2,\mathbf{b}\cdot \mathbf{c} $ or $ {{\mathbf{a}}^{2}}={{\mathbf{b}}^{2}}+{{\mathbf{c}}^{2}}+2|\mathbf{b}||\mathbf{c}|,\cos \frac{\pi }{2} $ or $ {{\mathbf{a}}^{2}}={{\mathbf{b}}^{2}}+{{\mathbf{c}}^{2}}+0,,\therefore {{\mathbf{a}}^{2}}={{\mathbf{b}}^{2}}+{{\mathbf{c}}^{2}} $ i.e., $ a^{2}=b^{2}+c^{2} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें