Vector Algebra Question 233

Question: If a and b are the position vectors of A and B respectively, then the position vector of a point C on AB produced such that $ \overrightarrow{AC}=3\overrightarrow{AB} $ is

[MNR 1980; MP PET 1995, 99]

Options:

A) $ 3\mathbf{a}-\mathbf{b} $

B) $ 3\mathbf{b}-\mathbf{a} $

C) $ 3\mathbf{a}-2\mathbf{b} $

D) $ 3\mathbf{b}-2\mathbf{a} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Since given that $ \overrightarrow{AC}=3\overrightarrow{AB}. $ It means that point $ C $ divides $ AB $ externally. Thus $ \overrightarrow{AC}:\overrightarrow{BC}=3:2 $ Hence $ \overrightarrow{OC}=\frac{3.\mathbf{b}-2.\mathbf{a}}{3-2}=3\mathbf{b}-2\mathbf{a}. $