Vector Algebra Question 239

Question: P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then $ \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}= $

[RPET 1989; J & K 2005]

Options:

A) $ \overrightarrow{OP} $

B) $ 2\overrightarrow{OP} $

C) $ 3\overrightarrow{OP} $

D) $ 4\overrightarrow{OP} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • We know that P will be the midpoint of AC and BD
    $ \therefore $ $ ,\overrightarrow{OA}+\overrightarrow{OC}=2\overrightarrow{OP} $ ……(i) and $ \overrightarrow{OB}+\overrightarrow{OD}=2\overrightarrow{OP} $ ?..(ii) Adding (i) and (ii), we get, $ \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=4\overrightarrow{OP}. $