Vector Algebra Question 243

Question: If the position vector of one end of the line segment AB be $ 2\mathbf{i}+3\mathbf{j}-\mathbf{k} $ and the position vector of its middle point be $ 3,(\mathbf{i}+\mathbf{j}+\mathbf{k}), $ then the position vector of the other end is

Options:

A) $ 4\mathbf{i}+3\mathbf{j}+5\mathbf{k} $

B) $ 4\mathbf{i}-3\mathbf{j}+7\mathbf{k} $

C) $ 4\mathbf{i}+3\mathbf{j}+7\mathbf{k} $

D) $ 4\mathbf{i}+3\mathbf{j}-7\mathbf{k} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \overrightarrow{OA}=2\mathbf{i}+3\mathbf{j}-\mathbf{k}, $ $ \overrightarrow{OP}=3(\mathbf{i}+\mathbf{j}+\mathbf{k}), $ $ \overrightarrow{OB}=? $ we have $ \overrightarrow{OP}=\frac{\overrightarrow{OA}+\overrightarrow{OB}}{2} $
    $ \Rightarrow \overrightarrow{OB}=2\overrightarrow{OP}-\overrightarrow{OA} $ $ =4\mathbf{i}+3\mathbf{j}+7\mathbf{k} $ Trick : By inspection, middle point of $ 4\mathbf{i}+3\mathbf{j}+7\mathbf{k} $ and $ 2\mathbf{i}+3\mathbf{j}-\mathbf{k} $ is $ 3,(\mathbf{i}+\mathbf{j}+\mathbf{k}). $