Vector Algebra Question 249

Question: A and B are two points. The position vector of A is $ 6\mathbf{b}-2\mathbf{a}. $ A point P divides the line AB in the ratio 1 : 2. If $ \mathbf{a}-\mathbf{b} $ is the position vector of P, then the position vector of B is given by

[MP PET 1993]

Options:

A) $ 7\mathbf{a}-15\mathbf{b} $

B) $ 7\mathbf{a}+15\mathbf{b} $

C) $ 2\pi /3 $

D) $ 15\mathbf{a}+7\mathbf{b} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \overrightarrow{OP}=\frac{1(\overrightarrow{OB})+2(6\mathbf{b}-2\mathbf{a})}{1+2} $
    $ \Rightarrow 3(\mathbf{a}-\mathbf{b})=\overrightarrow{OB}+12\mathbf{b}-4\mathbf{a} $
    $ \Rightarrow \overrightarrow{OB}=7\mathbf{a}-15\mathbf{b} $ .