Vector Algebra Question 259

Question: Let A and B be points with position vectors a and b with respect to the origin O. If the point C on OA is such that $ 2AC=CO,CD $ is parallel to OB and $ |\overrightarrow{CD}|=3|\overrightarrow{OB}|, $ then $ \overrightarrow{AD} $ is equal to

Options:

A) $ 3\mathbf{b}-\frac{\mathbf{a}}{2} $

B) $ 3\mathbf{b}+\frac{\mathbf{a}}{2} $

C) $ 3\mathbf{b}-\frac{\mathbf{a}}{3} $

D) $ 3\mathbf{b}+\frac{\mathbf{a}}{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Since $ \overrightarrow{OA}=\mathbf{a}, $ $ \overrightarrow{OB}=\mathbf{b} $ and $ 2AC=CO $ By section formula $ \overrightarrow{OC}=\frac{2}{3}\mathbf{a}. $ Therefore, $ |\overrightarrow{CD}|=3|\overrightarrow{OB}|,\Rightarrow \overrightarrow{CD}=3\mathbf{b} $
    $ \Rightarrow \overrightarrow{OD}=\overrightarrow{OC}+\overrightarrow{CD}=\frac{2}{3}\mathbf{a}+3\mathbf{b} $ Hence, $ \overrightarrow{AD}=\overrightarrow{OD}-\overrightarrow{OA}=\frac{2}{3}\mathbf{a}+3\mathbf{b}-\mathbf{a}=3\mathbf{b}-\frac{1}{3}\mathbf{a}. $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें