Vector Algebra Question 267

Question: The vector equation of the plane passing through the origin and the line of intersection of the plane $ \mathbf{r}.\mathbf{a}=\lambda $ and $ \mathbf{r}.\mathbf{b}=\mu $ is

Options:

A) $ \mathbf{r}.(\lambda \mathbf{a}-\mu \mathbf{b})=0 $

B) $ \mathbf{r}.,(\lambda \mathbf{b}-\mu \mathbf{a})=0 $

C) $ \mathbf{r}.(\lambda \mathbf{a}+\mu \mathbf{b})=0 $

D) $ \mathbf{r}.(\lambda \mathbf{b}+\mu \mathbf{a})=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The equation of a plane through the line of intersection of the planes $ \mathbf{r}.\mathbf{a}=\lambda $ and $ \mathbf{r}.,\mathbf{b}=\mu $ can be written as $ (\mathbf{r}.\mathbf{a}-\lambda )+k(\mathbf{r}.\mathbf{b}-\mu )=0 $ or $ \mathbf{r}.(\mathbf{a}+k\mathbf{b})=\lambda +k\mu $ …..(i) This passes through the origin, therefore $ \mathbf{0}.(\mathbf{a}+k\mathbf{b})=\lambda +\mu k\Rightarrow k=\frac{-\lambda }{\mu } $ Putting the value of k in (i), we get the equation of the required plane as $ \mathbf{r}.(\mu \mathbf{a}-\lambda \mathbf{b})=0\ \Rightarrow \ \ \mathbf{r}\ .\ (\lambda \mathbf{b}-\mu \mathbf{a})=0 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें