Vector Algebra Question 269

Question: If vectors $ \vec{a} $ and $ \vec{b} $ are two adjacent sides of a Parallelogram, then the vector representing the altitude of the parallelogram which is perpendicular to $ \vec{a} $ is

Options:

A) $ \vec{b}+\frac{\vec{b}\times \vec{a}}{{{| {\vec{a}} |}^{2}}} $

B) $ \frac{\vec{a}\cdot \vec{b}}{{{| {\vec{b}} |}^{2}}} $

C) $ \vec{b}-\frac{\vec{b}\cdot \vec{a}}{{{| {\vec{a}} |}^{2}}}\vec{a} $

D) $ \frac{\vec{a}\times (\vec{b}\times \vec{a})}{{{| {\vec{b}} |}^{2}}} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let $ \overrightarrow{OD}=t\vec{a} $
    $ \therefore \overrightarrow{OD}=\vec{b}-t\vec{a} $ Or $ (\vec{b}-t\vec{a}).\vec{a}=0 $ $ (\therefore \overrightarrow{DB}\bot \overrightarrow{OA}) $ Or $ t=\frac{\vec{b}\cdot \vec{a}}{{{| {\vec{a}} |}^{2}}} $