Vector Algebra Question 271

Question: If $ A,,B,,C $ are the vertices of a triangle whose position vectors are a, b, c and G is the centroid of the $ \Delta ABC, $ then $ \overrightarrow{GA}+\overrightarrow{GB},+\overrightarrow{GC} $ is

[Karnataka CET 2000]

Options:

A) 0

B) $ \overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C} $

C) $ \frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3} $

D) $ \frac{\mathbf{a}+\mathbf{b}-\mathbf{c}}{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Position vectors of vertices A, B and C of the triangle ABC = a, b and c. We know that position vector of centroid of the triangle (G) = $ \frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3} $ . Therefore , $ \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC} $ $ =( \mathbf{a}-\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3} )+( \mathbf{b}-\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3} )+( \mathbf{c}-\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3} ) $ $ =\frac{1}{3}[2\mathbf{a}-\mathbf{b}-\mathbf{c}+2\mathbf{b}-\mathbf{a}-\mathbf{c}+2\mathbf{c}-\mathbf{a}-\mathbf{b}]=\mathbf{0} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें