Vector Algebra Question 275

Question: The equation of the plane containing the lines $ \mathbf{r}={{\mathbf{a}}_1}+\lambda {{\mathbf{a}}_2} $ and $ \mathbf{r}={{\mathbf{a}}_2}+\lambda {{\mathbf{a}}_1} $ is

Options:

A) $ [\mathbf{r},\ {{\mathbf{a}}_1}\ ,{{\mathbf{a}}_2}]=0 $

B) $ [\mathbf{r}\ ,{{\mathbf{a}}_1}\ ,{{\mathbf{a}}_2}]={{\mathbf{a}}_1}.\ {{\mathbf{a}}_2} $

C) $ [\mathbf{r}\ ,{{\mathbf{a}}_2}\ ,{{\mathbf{a}}_1}]={{\mathbf{a}}_1}.\ {{\mathbf{a}}_2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • The required plane passes through a point having position vector $ {{\mathbf{a}}_1} $ and is parallel to the vectors $ {{\mathbf{a}}_1} $ and $ {{\mathbf{a}}_2} $ . If $ \mathbf{r} $ is the position vector of any point on the plane, then $ \mathbf{r}-{{\mathbf{a}}_1},{{\mathbf{a}}_1},{{\mathbf{a}}_2} $ are coplanar. Therefore, $ (\mathbf{r}-{{\mathbf{a}}_1}).({{\mathbf{a}}_1}\times {{\mathbf{a}}_2})=0 $
    Þ $ [\mathbf{r}{{\mathbf{a}}_1},{{\mathbf{a}}_2}] $ = $ [{{\mathbf{a}}_1},{{\mathbf{a}}_1},{{\mathbf{a}}_2}]\Rightarrow [\mathbf{r},{{\mathbf{a}}_1},{{\mathbf{a}}_2}]=0 $ Hence, the required plane is $ [\mathbf{r}{{\mathbf{a}}_1},{{\mathbf{a}}_2}]=0 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें