Vector Algebra Question 279

Question: The point having position vectors $ 2\mathbf{i}+3\mathbf{j}+4\mathbf{k}, $ $ 3\mathbf{i}+4\mathbf{j}+2\mathbf{k}, $ $ 4\mathbf{i}+2\mathbf{j}+3\mathbf{k} $ are the vertices of

[EAMCET 1988]

Options:

A) Right angled triangle

B) Isosceles triangle

C) Equilateral triangle

D) Collinear

Show Answer

Answer:

Correct Answer: C

Solution:

  • Here, $ \overrightarrow{OA}=2\mathbf{i}+3\mathbf{j}+4\mathbf{k}, $ $ \overrightarrow{OB}=3\mathbf{i}+4\mathbf{j}+2\mathbf{k} $ $ \overrightarrow{OC}=4\mathbf{i}+2\mathbf{j}+3\mathbf{k} $ So, $ \overrightarrow{AB}=\mathbf{i}+\mathbf{j}-2\mathbf{k}, $ $ \overrightarrow{BC}=\mathbf{i}-2\mathbf{j}+\mathbf{k} $ , $ \overrightarrow{CA}=2\mathbf{i}-\mathbf{j}-\mathbf{k} $ Clearly $ |AB|,=,|BC|,=,|CA|,=\sqrt{6} $ So these points are vertices of an equilateral triangle.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें