Vector Algebra Question 279

Question: The point having position vectors $ 2\mathbf{i}+3\mathbf{j}+4\mathbf{k}, $ $ 3\mathbf{i}+4\mathbf{j}+2\mathbf{k}, $ $ 4\mathbf{i}+2\mathbf{j}+3\mathbf{k} $ are the vertices of

[EAMCET 1988]

Options:

A) Right angled triangle

B) Isosceles triangle

C) Equilateral triangle

D) Collinear

Show Answer

Answer:

Correct Answer: C

Solution:

  • Here, $ \overrightarrow{OA}=2\mathbf{i}+3\mathbf{j}+4\mathbf{k}, $ $ \overrightarrow{OB}=3\mathbf{i}+4\mathbf{j}+2\mathbf{k} $ $ \overrightarrow{OC}=4\mathbf{i}+2\mathbf{j}+3\mathbf{k} $ So, $ \overrightarrow{AB}=\mathbf{i}+\mathbf{j}-2\mathbf{k}, $ $ \overrightarrow{BC}=\mathbf{i}-2\mathbf{j}+\mathbf{k} $ , $ \overrightarrow{CA}=2\mathbf{i}-\mathbf{j}-\mathbf{k} $ Clearly $ |AB|,=,|BC|,=,|CA|,=\sqrt{6} $ So these points are vertices of an equilateral triangle.