Vector Algebra Question 28

Question: Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity $ \vec{u} $ and the other from rest with uniform acceleration $ \vec{f} $ . Let $ \alpha $ be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time

Options:

A) $ \frac{u\cos \alpha }{f} $

B) $ \frac{u\sin \alpha }{f} $

C) $ \frac{f\cos \alpha }{u} $

D) $ u\sin \alpha $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We can consider the two velocities as $ {{\vec{v}}_1}=u\hat{i} $ and $ {{\vec{v}}_2}=(ftcos\alpha )\hat{i}+(ftsin\alpha )\hat{j} $
    $ \therefore $ Relative velocity of Second with respect to first $ \vec{v}={{\vec{v}}_2}-{{\vec{v}}_1}=(ft\cos \alpha -u)i+ft\sin \alpha \hat{j} $
    $ \Rightarrow {{| {\vec{v}} |}^{2}}={{(ft\cos \alpha -u)}^{2}}+{{(ft\sin \alpha )}^{2}} $ $ f^{2}t^{2}+u^{2}-2uft\cos \alpha $ For $ | {\vec{v}} | $ to be min we should have $ \frac{d{{| v |}^{2}}}{dt}=0\Rightarrow 2f^{2}t-2uf\cos \alpha =0 $
    $ \Rightarrow t=\frac{u\cos \alpha }{f} $ Also $ \frac{d^{2}{{| v |}^{2}}}{dt^{2}}=2f^{2}=+ve $
    $ \therefore {{| v |}^{2}} $ and hence $ | v | $ is least at the time $ \frac{u\cos \alpha }{f} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें